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Therefore, ,llirr%) M exists and equals to 0, that means f is differentiable at x = 0
—
and f'(0) = 0.

(b) If x >0, f'(z) =2x. If <0, f'(x) =0. Combine them with the result in (a), we have
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F0+h) = F(0) does not exists, i.e. f’ is not differentiable at z = 0.
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5. Let f(x) = 2™, so f is differentiable everywhere.
If x > y > 0, by Mean Value Theorem, there exists ¢ € (y, ) such that
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Note that > ¢ >y, so 2" ! > ¢"~! > y»~! and we have
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(a) i. Put x =y =0, we have f(0) = [f(0)]2, so f(0) =0 or 1. If we put 0 to the inequality in
the second condition, we have 1 < f(0), so f(0) = 1.

ii. If z > 0, by the inequality in the second condition, we have
flz)>1+z>1.
iii. If z < 0, then
Therefore, f(z) = —— > 0.
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fo+(a—=0)) = f(b)
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Note: a —b >0, so f(a —b) > 1.

(b) We put h to the inequality in the second condition, we have

1+ h < f(h) <1+ hf(h).

Also, f(h) <1+ hf(h) implies that f(h) <
Therefore, when h < 1,
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Note that lim 1 + h = lim —— =1, so by sandwich theorem, we have
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which implies f is continuous at x = 0.
(¢) From the inequality in the second condition, we have
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If h > 0, we have 1 < % < f(h) so by sandwich theorem, we have
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Similarly, if h < 0, we have 1 > % > f(h) so by sandwich theorem, we have
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Now, we have
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which implies that f is differentiable at © = 0 and f’(0) = 1.



